Diabetic Neuropathy – An Overview

Dr. Mark Hannon MD MSc FRCPI
Consultant Physician and Endocrinologist
Bantry General Hospital
Septebmer 20th 2017

Neuropathy in Diabetes

- Overall, one of the most common complications of DM
- Prevalence directly proportional to disease duration
- ~50% lifetime risk of neuropathy if one has DM
- Worse A1c, worse BP = more neuropathy

- Diabetic patients with foot problems occupy more hospital beds than do those with all other diabetic complications
- Average cost of DM foot adm in Beaumont Hospital = €33000

Type of DM Neuropathy

Autonomic neuropathy

Polyradiculopathy

Mononeuropathy

Symmetric peripheral neuropathy

- Cardiovascular autonomic neuropathy:
 - Persistent fixed sinus tachycardia
 - No HR variability during Valsalva manoeuvre increased silent MI, sudden death
 - Orthostatic hypotension BP drop > 20/10 within 3 mins
 - Posture induced tachycardia without a fall in blood pressure can result in significant postural symptoms of lightheadedness, dizziness and pre-syncope
 - Mean mortality 30% over 5 years greatly increased from baseline
 - Macro and microvascular disease
 - Sudden cardiac death
 - Silent ischaemia
 - More stroke and renal complications
 - More sleep apnoea

- Cardiovascular autonomic neuropathy:
 - Tight control prevents progression
 - Fludrocortisone / midodrine / octreotide may help with symptomatic postural drop
 - Fludrocortisone worsens peripheral oedema, causes low K
 - Midodrine causes severe supine hypertension
 - Octreotide has multiple GI side effects

- Peripheral vasomotor neuropathy:
 - Loss of sweat function in a stocking and glove distribution which manifests as proximal hyperhidrosis
 - Changes in the texture of the skin, itching, oedema, venous prominence, callus formation, loss of nails, and sweating abnormalities of the feet
 - Symptoms such as aching, pulsation, tightness, cramping, dry skin, and pruritus
 - Peripheral oedema, which is often associated with both foot ulceration and poor wound healing
 - Development of Charcot arthropathy
 - Only treatment = better control

- GI autonomic neuropathy:
 - Severe reflux due to lower oesophageal sphincter relaxation
 - Symptoms of gastroparesis include nausea, vomiting, early satiety, bloating, and/or upper abdominal pain
 - Diarrhoea and steatorrhoea in advanced disease

- Gl autonomic neuropathy:
 - High dose PPI may be needed long term
 - Remove GLP1 analogues
 - Metoclopramide = first line for gastroparesis
 - Others = domperidone, erythromycin
 - Gastric electrical stimulation
 - Surgery

GU neuropathy:

- Bladder dysfunction, retrograde ejaculation, erectile dysfunction, and dyspareunia
- Erectile dysfunction is associated with the development of cardiovascular disease
- Diabetic bladder dysfunction initially presents as a decrease in the ability to sense a full bladder, leading to frequency (mistaken for prostatism)
- LUTS present in 20 percent of men with type 1 diabetes after 10 yrs, 30% of women have incontinence at 10 yrs
- Retrograde ejaculation, cloudy urine, erectile dysfunction

GU neuropathy:

- Post void residual +/- urodynamics
- Remove meds that impair detrusor activity (anticholinergic agents, tricyclic antidepressants and calcium channel antagonists) or agents that increase urethral sphincter tone (alpha bblockers)
- ED will need assessment of T (measure in early morning with SHBG, LH, FSH) in type 2 DM
- PDE5 inhibitors if T normal

Polyradiculopathy

- Diabetic amyotrophy:
 - Not a pure lumbosacral plexopathy because it also affects the lumbosacral nerve roots and peripheral nerves
 - ? ischemic injury from a nonsystemic microvasculitis
 - Acute, asymmetric, focal onset of pain followed by weakness involving the proximal leg, with associated autonomic failure and weight loss
 - Progression occurs over months
 - Followed by partial recovery in most patients
 - Same process can occur in the contralateral leg, immediately following (within days) or much later than (months to years) the initial attack
 - EMG / MRI usually needed for dx

Polyradiculopathy

- Thoracic polyradiculopathy:
 - Less common
 - Affected patients present with severe abdominal pain, sometimes in a bandlike pattern, and frequently have undergone extensive GI tests
 - Thoracic and upper limb involvement has also been observed as part of the syndrome of diabetic amyotrophy in a minority of patients
- Diabetic neuropathic cachexia:
 - Rare unintended severe weight loss and depression
 - Most frequently occurs in men with type 2 diabetes on oral hypoglycemic agents who are middle-aged or older.
 - Most patients improve spontaneously within 12 to 24 months

- Cranial mononeuropathy:
 - CN 3, 4 and 6 most commonly
 - Typically present with unilateral pain, ptosis, and diplopia, with sparing of pupillary function
 - Facial mononeuropathy (Bell's palsy) occurs more frequently in diabetic than in nondiabetic patients

- Peripheral mononeuropathy:
 - Most common = median mononeuropathy at the wrist
 - Ulnar mononeuropathy, either at the elbow or, less commonly, at the wrist can also occur
 - Peroneal mononeuropathies with compression at the fibula are a well recognized complication of diabetes
 - Common peroneal palsy, for example, can result in foot drop
 - Isolated femoral mononeuropathies are rare in diabetes; many of these patients actually have a high lumbar radiculopathy (diabetic amyotrophy)

- Mononeuritis multiplex:
 - Multiple mononeuropathies in the same patient are known as mononeuritis multiplex (or asymmetric polyneuropathy)
 - Overlapping presentation with vasculitis, which should also be considered in affected patients

- Treatment Induced Neuropathy of Diabetes (TIND):
 - Also called insulin neuritis
 - Small fibre neuropathy that occurs in patients with chronic hyperglycaemia who experience rapid improvement in glyceamic control
 - Severe, treatment-resistant pain and autonomic dysfunction, along with worsening of retinopathy and nephropathy
 - Risk of developing TIND and the severity of neuropathic pain and autonomic dysfunction correlated with the magnitude of decrease in HbA1C.
 - Risk of TIND was increased with type 1 diabetes or a history of eating disorders, but it occurred with treatment using insulin or OHAs
 - Management = symptomatic
 - ? limit HbA1C reduction to < 2% (22 mmol/mol) over 3/12

Symmetric Peripheral Polyneuropathy

Affects 10 to 18% at diagnosis!

Primarily sensory

- Large fibres lost first proprioception, vibration sense
- Then small fibres touch
- Then motor weakness

Symmetrical Peripheral Polyneuropathy

- Progressive sensory loss predisposes to ulcer formation
- Chronic ulceration is multifactorial
 - Decreased sensation
 - Autonomic dysfunction + vascular insufficiency
- Imbalance between strength in toe extensors and flexors causing chronic metatarsal-phalangeal flexion (claw-toe deformity) which shifts weight to the metatarsal heads
- Collapse of the arch of the midfoot and bony prominences, leading to Charcot arthropathy, fragmentation and sclerosis of bone, new bone formation, subluxation, dislocation, and stress fractures

Symmetrical Peripheral Polyneuropathy

- American Academy of Neurology 2011 Guidelines:
- Pregabalin (300 to 600 mg daily) was regarded as effective
- A number of treatments were regarded as probably effective:
 - Gabapentin, 900 to 3600 mg daily
 - Sodium valproate, 500 to 1200 mg daily
 - Amitryptiline, 25 to 100 mg daily
 - Duloxetine, 60 to 120 mg daily
 - Venlafaxine, 75 to 225 mg daily
 - Dextrometorphan, 400 mg daily

Symmetric Peripheral Polyneuropathy

- ADA Management Algorithm 2005:
- Exclude nondiabetic aetiologies
- Stabilize glycaemic control (insulin not always required in type 2 diabetes)
- Tricyclic drugs (eg, amitryptiline / duloxetine)
- Anticonvulsants (eg, gabapentin / pregabalin)
- Opioid or opioid-like drugs (eg, tramadol or controlled release oxycodone)
- Consider pain clinic referral

Symptomatic Peripheral Polyneuropathy

- Optimal glucose control prevents diabetic neuropathy
- Optimal glucose control led to significant improvements in surrogate measures of neuropathy in patients with established neuropathy (Callaghan et al, Cochrane 2012)
- Optimal glycemic control is associated with improvement in symptoms for patients who develop acute painful diabetic neuropathy after a period of extreme hyperglycemia
- Established symptomatic diabetic neuropathy is generally not reversible even with intensive glucose control

Summary

- Neuropathy accounts for multiple presentations in DM patients
- Usually related to poor control and poor BP
- Often polysymptomatic and difficult to treat

Prevention definitely better than cure!!

Thank you

• Questions?